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Let M be a compact manifold without boundary, and P an elliptic pseudodifferential
operator of order s. Then P : H t+s(M) → H t(M) is bounded for all t ∈ R. We will
be pedantic write Pt+s→s to denote P with domain H t+s. There is also another elliptic
pseudodifferential operator Q of order −s such that PQ ≡ QP ≡ I modulo smoothing
operators. Let P ∗ denote the formal adjoint of P , which is again an elliptic pseudodifferential
operator of order s. By elliptic regularity, kerPt+s→t ⊆ C∞(M) does not depend on t, and
likewise for P ∗. We will call this common space kerP (resp. kerP ∗).

We show the following Fredholm properties of P :

Theorem 1.1. Let s ∈ R. Then we have the decompositions

H t(M) = kerP ⊕ im(P ∗)t+s→t = kerP ∗ ⊕ imPt+s→t

where the sums are orthogonal with respect to the L2 inner product (in the case that t < 0,
one must interpret this as a distributional paring on C∞(M)).

Also, dim kerP, dim kerP ∗ <∞. Then, L2 projections ΠV (V = kerP, kerP ∗) exist and
are smoothing operators. Furthermore, there exists a pseudodifferential Q̃ of order −s such
that

Q̃P = I − ΠkerP , P Q̃ = I − ΠkerP ∗ .

Q̃ is formally self-adjoint if P is.
Lastly, we also have the analogous decompositions

C∞(M) = kerP ⊕ P ∗(C∞(M)) = kerP ∗ ⊕ P (C∞(M)),

and
D′(M) = kerP ⊕ P ∗(D′(M)) = kerP ∗ ⊕ P (D′(M)),

which are also orthogonal (the second of the pair of decompositions is again interpreted via
the distributional pairing).

We will use this theorem to prove the following well-known result:
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Theorem 1.2. Let P be a formally self-adjoint elliptic pseudodifferential operator of order
s 6= 0 acting on a compact manifold M . Then there exist a sequence of smooth functions
un and real numbers λn such that Pun = λnun and the un (suitably normalized) form an
orthonormal basis of L2(M). If s > 0, |λn| → ∞. if s < 0, λn → 0. In particular P is
an essentially self-adjoint (possibly unbounded) operator on L2(M). If s = 0, then P is still
self-adjoint

In particular for the case −∆+1 this is true. Since −∆+1 is a formally positive operator
with no kernel, all of its eigenvalues are > 0. There is no conclusion about eigenvalues for
the case, s = 0 as the identity operators shows.

Proof of Theorem 1.1. Smoothing operators are bounded between all H t(M), and in par-
ticular are compact on all H t(M). The Fredholm theorem then applies, and so kerP ,
cokPt→t+s are finite-dimensional, imPt→t−s is closed, and similarly for P ∗. Notice now that
(P ∗)s−t→−t = (Pt→t−s)

∗, i.e. the Banach space adjoint of Pt→t+s is given by P ∗> Indeed, the
operators both satisfy

(P ∗u|v) = (u|Pv) = (P ∗t→t−su|v)

for all u, v ∈ C∞, and so
P ∗u = (Pt→t−s)

∗u

for all u ∈ C∞. Since both operators bounded on Hs−t, they are the same. Thus we will
just write P ∗−t+s→−t for both operators.

We therefore have the following decomposition:

L2(M) = kerP ⊕ kerP⊥.

It is clear that kerP = (imP ∗s→0)
⊥, and since imP ∗s→0 is closed, that kerP⊥ = imP ∗s→0.

Now fix t > 0. If u ∈ H t(M),, then u ∈ L2(M) and so u = v + w for v ∈ kerP ,
w ∈ imP ∗s→0, and (v|w) = 0. Since v ∈ C∞(M) ⊆ H t(M), w ∈ H t(M) as well, and thus by
elliptic regularity, w = P ∗w′ for some w′ ∈ s+ t. This proves that

H t(M) = kerP ⊕ imP ∗t+s→t,

and the decomposition is orthogonal. The same argument proves the C∞(M) decomposition.
Now fix t < 0. Then by density

H t(M) = kerP ⊕ imP ∗s→0.

Now kerP is finite-dimensional, and so kerP ⊕ imP ∗s→0 is closed. So

H t(M) = kerP ⊕ imP ∗s→0.

By continuity, this decomposition is orthogonal. Since imP ∗t+s→t is closed and contains
imP ∗s→0,

imP ∗s→0 ⊆ imP ∗t+s→t.
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Conversely, if u = P ∗v where v ∈ H t+s(M), then v = lim vn where vn ∈ Hs(M), and so
u = limPvn ∈ imP ∗s→0. So we have the decomposition

H t(M) = kerP ⊕ imP ∗t+s→t.

The decomposition for D′(M) follows immediately from the above and the fact that

D′(M) =
⋃
s∈R

Hs(M).

Since P ∗∗ = P , we have the other of the two decompositions, too.
If V ⊆ C∞(M) is finite-dimensional, we may pick a basis e1, . . . , en of V . Then ΠV

has kernel
∑n

i=1 ei(y)ei(x) and is thus smoothing. Define Q̃ first on C∞(M) as follows: by
the decomposition, P is injective on P ∗(C∞(M)). So we may define Q̃ : P (C∞(M)) →
P ∗(C∞(M)) to be its two-sided inverse. Extend Q̃ to an operator on all of C∞(M) by
setting Q̃(kerP ∗) = 0. By the decomposition, this makes Q̃ well-defined. Notice that the
decomposition

v = ΠkerP ∗v + (I − ΠkerP ∗)v

is an orthogonal decomposition, and so (I − ΠkerPv) ∈ P (C∞(M)). It follows that

PQ̃v = PQ̃(I − ΠkerP ∗)v = (I − ΠkerP ∗)v.

Similiar, we may write
v = ΠkerPv + (I − ΠkerP )v,

and so
Q̃Pv = Q̃P (I − ΠkerP )v = (I − ΠkerP )v.

We next extend Q̃ to a bounded operator H t(M)→ H t+s(M) for all t ∈ R. This is done
in a similar way to the above. P is injective on im(P ∗t+s→tto imPt+s→t and so has an inverse
Q̃. This Q̃ agrees with the one obtained above on P ∗(C∞(M)) since we have the inclusion
P ∗(C∞(M)) ⊆ im(P ∗t+s→t. Since imPt+s→t is closed, by the open mapping theorem, Q̃ is
bounded. We also define, as above, Q̃ to be 0 on kerP . This definition extends Q̃. Q̃
is bounded restricted to kerP and to imPt+s→s. This implies that it is bounded on their
sum, which is H t(M). See Lemma 1.3. Since ΠV is already bounded on all H t spaces
(V = kerP, kerP ∗), Q̃Pv = I − ΠkerP and PQ̃ = (I − ΠkerP ∗).

From this, one shows easily using Sobolev embedding that Q̃ is continuous on C∞(M).
Next we show that Q̃ is pseudodifferential. Indeed, ifQ is any pseudodifferential parametrix

to P then PQ = I −K, where K is smoothing. Thus,

Q̃PQ = Q̃(I −K) = Q̃− Q̃K.

On the other hand,
Q̃PQ = (I − ΠkerP )Q = Q−QΠkerP .
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Now QΠkerP is smoothing, since Q is continuous on C∞(M). Similarly, Q̃K is smoothing.
Thus Q̃−Q is smoothing. Since Q is pseudodifferential, so is Q̃.

Finally we show that Q̃ is formally self-adjoint if P is. If u, v ∈ C∞(M), we write
u = u′ + u′′ and v = v′ + v′′ where u′, v′ ∈ kerP and u′′, v′′ ∈ P (C∞(M)). Since P ∗ = P , by
definition this means that Q̃u = Q̃u′′ and Q̃v = Q̃v′′. Write u′′ = Px and v′′ = Py. Then

(Q̃u|v) = (Q̃u′′|v) = (Q̃Px|v′ + Py) = ((I − ΠkerP )x|v′) + ((I − ΠkerP )x|Py).

Since v′ ∈ kerP , the first sum is 0. Since x is orthogonal to kerP , (I − ΠkerP )x = x. So

(Q̃u|v) = (x|Py) = (Px|y).

Arguing in reverse shows formal self-adjointness.

Proof of Theorem 1.2. If s < 0, then P : L2(M) → H−s(M) → L2(M), where the last
inclusion is compact since −s > 0, and so P is compact. P is also self-adjoint; (Pu|v) =
(u|Pv) for u, v ∈ C∞(M). Since P is bounded L2 → L2, we may extend this to u, v ∈ L2(M).
Since P is then a compact self-adjoint operator on a Hilbert space, the statement about the
existence of L2 eigenvalues and eigenvectors follows from general theory. Next we prove that
all eigenvectors are of class C∞. If Pv = 0, then v ∈ C∞(M) by elliptic regularity. Otherwise,
if Pv = λv for λ 6= 0, then again by elliptic regularity, v ∈ Hs(M) since Pv ∈ Hs(M).
Iterating, we have that v ∈ Hsn(M) for all n ∈ Z, and so v ∈ C∞(M).

if s > 0, then we may apply the above results to Q̃. Pick an orthonormal basis for the
finite-dimensional space kerP . All such vectors are smooth. We show that the eigenvectors
vn of Q̃ associated to non-zero eigenvalues λn are eigenvectors for P with eigenvalue λ−1n

and form an orthonormal basis of imPs→0. This will be sufficient since then we will have an
orthonormal basis of

L2(M) = kerP ⊕ imPs→0,

which consists entirely of smooth functions.
Since Q̃ is zero on kerP and the decomposition above is orthogonal, if Q̃vn = λvn for

λ 6= 0, then vn ∈ (kerP )⊥ = imP0→−s. Thus, the vn form an orthonormal basis of imPs→0.
Furthermore,

vn = (I − ΠkerP )vn = PQ̃vn = λnPvn.

whence we also have the the vn are eigenvectors of P .
Lastly, if s = 0, then P is bounded L2(M) → L2(M), and so formal self-adjointness

implies self-adjointness.

Lemma 1.3. Let V be a Banach space, and let U,W be closed subspaces of V so that
U∩W = 0 and U⊕W = V . Then there exists some constant C so that C ‖x+ y‖ ≥ ‖x‖+‖y‖
whenever x ∈ U , y ∈ V . Furthermore, if X is another Banach space, then T : V → X is
bounded iff the restrictions T |U anad T |W are.

Proof. U⊕W is an abstract Banach space under the norm ‖x+ y‖ = ‖x‖+‖y‖. Indeed, this
turns U⊕W into a normed space. It is complete since if xn+yn is Cauchy, then xn and yn are

4



individually Cauchy, and so converge because U,W are closed. The map v = x+ y 7→ x+ y
from V to U ⊕W is certainly well-defined, bijective, and bounded because of the triangle
inequality. Thus by the open mapping theorem its inverse is bounded. This statement is
equivalent to the first conclusion.

For the second conclusion, one direction is clear. For the other, notice that by bounded-
ness, whenever x ∈ U and y ∈ V ,

‖T (x+ y)‖ ≤ ‖Tx‖+‖Ty‖ ≤ max(‖T |U‖ , ‖T |V ‖)(‖x‖+‖y‖) ≤ C max(‖T |U‖ , ‖T |V ‖) ‖x+ y‖ .
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